04 : Probabilités conditionnelles

Exercice 1

Dans un lycée, II y a 30 % d'internes, 20 % d'externes et 50 % de demi-pensionnaires. 25 % des internes participent à la chorale, 10 % des externes y participent et 15 % des demi-pensionnaires.

On rencontre un élève du lycée au hasard.

- 1. Représenter la situation par un arbre pondéré.
- 2. quelle est la probabilité que l'élève rencontré soit interne et participe à la chorale.
- 3. Quelle est la probabilité que l'élève participe à la chorale ?
- **4.** Sachant que l'élève participe à la chorale, quelle est la probabilité qu'il soit interne ?

Exercice 2

Un test de dépistage permet de déceler la présence d'une maladie parmi les individus d'une population.

La **sensibilité clinique** de ce test médical est la capacité à détecter cette maladie lorsque celle-ci est présente.

La **valeur prédictive d'un test positif** (VPP), indique la probabilité qu'un test lorsqu'il est positif, soit réellement positif et nom faussement positif.

Des études statistiques ont prouvé que 4 % de la population d'un pays est atteinte par une certaine maladie. Pour cette maladie, un laboratoire pharmaceutique élabore un nouveau test de dépistage.

Les essais sur un groupe témoin ont donné les résultats suivants :

	Malades	Non malades	Total	
Test +	340	60	400	
Test -	96	9 504	9 600	
Total	436	9 564	10 000	

On choisit une personne au hasard dans cet échantillon et on s'intéresse aux événements suivants :

M: « Elle est atteinte par la maladie »

T : « Elle réagit positivement au test ».

- 1. Que représente la sensibilité clinique du test en termes de probabilité conditionnelle ?
- 2. Que représente la VPP en termes de probabilité conditionnelle ?
- **3.** Déterminer la sensibilité clinique de ce test.
- 4. Déterminer la VPP de ce test.

Première Page 1 sur 4

Exercice 3

Le tableau ci-dessous indique la répartition d'un groupe de 2000 donneurs de sang en fonction du groupe sanguin et du facteur rhésus :

		Groupe sanguin			
		Α	В	AB	0
Facteur rhésus	Rh+	660	160	85	716
	Rh-	140	40	15	184

On rencontre au hasard l'une de ces 2000 personnes.

- 1. Quelle est la probabilité qu'elle soit du groupe O?
- 2. Quelle est la probabilité qu'elle soit du rhésus négatif ?
- **3.** On sait qu'elle est du groupe O. Quelle est la probabilité pour qu'elle soit de rhésus négatif ?
- **4.** Quelle est la probabilité pour qu'elle soit du groupe O sachant qu'elle est de rhésus négatif

Exercice 4

Un lecteur d'une bibliothèque est passionné de romans policiers et de biographies. Cette bibliothèque lui propose 150 romans policiers et 50 biographies.

40% des écrivains de romans policiers écrivent en français et 70% des écrivains de biographies écrivent en français.

Le lecteur choisit un livre au hasard parmi les 200 ouvrages.

On s'intéresse aux événements suivants :

- B: « le livre choisi est une biographie »;
- F: « l'auteur du livre choisi écrit en français ».

On note \overline{B} et \overline{F} les événements contraires.

- **1.** Donner les valeurs de P(B), de $P_{\overline{B}}(F)$ et de $P_{\overline{B}}(F)$.
- 2. Construire un arbre pondéré traduisant cette situation.
- **3.** Déterminer P(F).
- **4.** Déterminer la probabilité que le livre choisi soit un roman sachant qu'il est écrit en français.

Première Page 2 sur 4

Exercice 5

On considère deux événements A et B tel que P(A) = 0.6, P(B) = 0.3 et $P(A \cap B) = 0.18$.

- 1. Les événements A et B sont-ils indépendants ?
- **2.** Calculer $P_A(B)$ et $P_B(A)$.

Exercice 6

En promotion au rayon « image et son » d'un grand magasin, un téléviseur et un lecteur de DVD sont en promotion pendant une semaine. Une personne se présente. La probabilité qu'elle achète le téléviseur est $\frac{3}{5}$; la probabilité qu'elle achète le lecteur de DVD si elle

achète le téléviseur est $\frac{7}{10}$; la probabilité qu'elle achète le lecteur de DVD si elle n'achète

pas le téléviseur est $\frac{1}{10}$. On considère les événements suivants :

T: « la personne achète le téléviseur » ;

L: « la personne achète le lecteur de DVD ».

- 1. Traduire les données de l'énoncé à l'aide d'un arbre pondéré.
- 2. Déterminer les probabilités des événements suivants :
- a. « la personne achète les deux appareils ».
- **b.** « la personne achète le lecteur de DVD ».
- c. « la personne n'achète aucun des deux appareils ».
- 3. Montrer que, si la personne achète le lecteur de DVD, la probabilité qu'elle achète aussi le téléviseur est $\frac{21}{22}$.

Première Page 3 sur 4

Exercice 7

Une entreprise vend des calculatrices d'une certaine marque. Le service après-vente s'est aperçu qu'elles pouvaient présenter deux types de défaut, l'un lié au clavier et l'autre lié à l'affichage

Des études statistiques ont permis à l'entreprise d'utiliser la modélisation suivante :

La probabilité pour une calculatrice tirée au hasard de présenter un défaut de clavier est égale à 0,04. En présence du défaut de clavier, la probabilité que la calculatrice soit en panne d'affichage est de 0,03.

Alors qu'en l'absence de défaut de clavier, la probabilité de ne pas présenter de défaut d'affichage est de 0,94.

On note les événements suivants :

C : « la calculatrice présente un défaut de clavier » ;

A : « la calculatrice présente un défaut d'affichage ».

- **1. a.** Préciser à l'aide de l'énoncé les probabilités suivantes : $P_{\overline{C}}(\overline{A})$, $P_{C}(A)$ et P(C).
- **b.** Construire un arbre pondéré décrivant cette situation.
- 2. On choisit une calculatrice de cette marque au hasard.
- a. Calculer la probabilité pour que la calculatrice présente les deux défauts.
- **b.** Calculer la probabilité pour que la calculatrice présente le défaut d'affichage mais pas le défaut de clavier.
- **3.** Sachant que la calculatrice présente un défaut d'affichage, calculer la probabilité qu'elle présente un défaut de clavier.
- **4.** La calculatrice ne présente pas de défaut d'affichage, calculer la probabilité qu'elle ne présente pas de défaut de clavier.
- **5.** Les problèmes de clavier et d'affichage sont-ils indépendants ?

Première Page 4 sur 4