03: Les vecteurs

I. Notion de vecteur

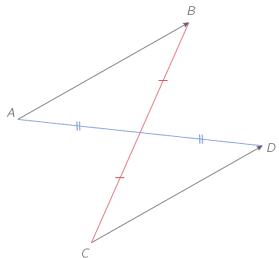
1. Translation et vecteur

Définition

Soit A et B deux points distincts du plan.

La translation qui transforme A en B est appelée translation de vecteur \overline{AB} .

Si le point D est l'image du point C par la translation de vecteur \overrightarrow{AB} , alors ABDC est un parallélogramme.



Interprétation

Lorsque A et B sont distincts, la translation qui transforme A en B est un « glissement » :

- Dans la direction de la droite (AB);
- Dans le sens de A vers B;
- De longueur *AB*.

Représentation d'un vecteur

- Lorsque A et B sont distincts, le vecteur \overrightarrow{AB} est symbolisé par une flèche de A vers B.
- La longueur AB est appelée norme du vecteur \overrightarrow{AB} .
- Le point A est appelé origine du vecteur AB et B son extrémité.

Définition

Le vecteur \overrightarrow{AB} est défini par :

- Une direction : la droite (AB)
- Un sens : de A vers B
- Une norme : la longueur *AB*

Seconde Page 1 sur 9

2. Égalité de vecteurs

Définition

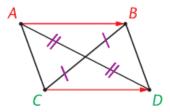
On dit que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux lorsque D est l'image de C par la translation de vecteur \overrightarrow{AB} .

On note $\overrightarrow{AB} = \overrightarrow{CD}$.

Propriété

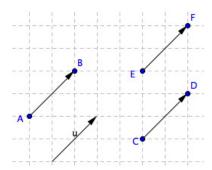
On considère deux points distincts du plan A et B.

- $\overrightarrow{AB} = \overrightarrow{CD}$ si est seulement si \overrightarrow{ABDC} est un parallélogramme (éventuellement aplati).
- $\overrightarrow{AB} = \overrightarrow{CD}$ si est seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} ont la même direction, le même sens et la même longueur.



3. Représentation d'un vecteur

Si $\overrightarrow{AB} = \overrightarrow{CD} = \overrightarrow{EF}$ alors on dit que les vecteurs \overrightarrow{AB} , \overrightarrow{CD} et \overrightarrow{EF} sont les représentants d'un même vecteur que l'on peut noter \overrightarrow{u} .



Remarque

Un vecteur a une infinité de représentants.

Seconde Page 2 sur 9

Application 1

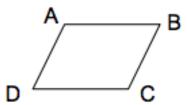
ABCD est un parallélogramme, construire les points E, F, G et H tels que :

$$\overrightarrow{DE} = \overrightarrow{BC}$$

$$\overrightarrow{CF} = \overrightarrow{DC}$$

$$\overrightarrow{BG} = \overrightarrow{AB}$$

$$\overrightarrow{HA} = \overrightarrow{BC}$$



4. Vecteur nul

Définition

La translation qui transforme A en A est la translation de vecteur nul, que l'on note $\vec{0}$.

Conséquence

 $\overrightarrow{AB} = \overrightarrow{0}$ si, et seulement si A et B sont confondus.

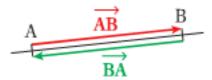
5. Vecteurs opposés

Définition

Le vecteur opposé au vecteur \overrightarrow{AB} est <u>le</u> vecteur noté \overrightarrow{BA} associé à la translation qui transforme B en A. On a alors $\overrightarrow{BA} = -\overrightarrow{AB}$.

Remarque

Les vecteurs \vec{u} et $-\vec{u}$ ont la même direction, la même longueur mais des sens opposés.



Exercice 1

On considère un parallélogramme NOTE.

- 1. Construire les points A et B, images respectives des points N et E par les translations de vecteurs \overrightarrow{TE} et \overrightarrow{OT} .
- **2.** Montrer que E est le milieu du segment [BN].

Seconde Page 3 sur 9

Exercice 2

Soit VER un triangle non aplati.

1. Construire les points T et J, images du point V par les translations respectives de vecteurs \overrightarrow{ER} et \overrightarrow{RE} .

2. Établir que $\overrightarrow{JV} = \overrightarrow{VT}$. Que peut-on en déduire ?

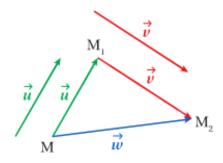
II. Somme de deux vecteurs

1. Définition

Soit u et v deux vecteurs.

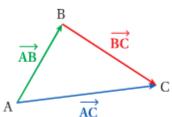
La somme des vecteurs u et v est le vecteur w associé à la translation résultant de l'enchaînement des translations de vecteur \vec{u} et de vecteur \vec{v} .

On en écrit : $\vec{w} = \vec{u} + \vec{v}$.



2. La relation de Chasles

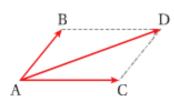
Pour tous points A, B et C on a : $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$.



Règle du parallélogramme

Soit *A*, *B* et *C* trois points du plan.

Le quadrilatère \overrightarrow{ABDC} est un parallélogramme si est seulement si $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$.



Seconde Page 4 sur 9

Démonstration

Supposons que $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$.

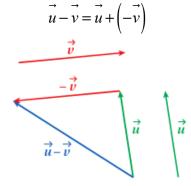
D'après la relation de Chasles, on a $\overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AB} + \overrightarrow{AC}$, d'où $\overrightarrow{CD} = \overrightarrow{AB}$. Autrement dit \overrightarrow{ABDC} est un parallélogramme.

3. Cas particulier : Différence de deux vecteurs

Définition

Soit \vec{u} et \vec{v} deux vecteurs.

On appelle différence du vecteur \vec{u} avec le vecteur \vec{v} le vecteur noté $\vec{u} - \vec{v}$ tel que :



Application 1

Simplifier les écritures :

$$\overrightarrow{AM} + \overrightarrow{MN}$$

$$\overrightarrow{MP} + \overrightarrow{AM}$$

$$\overrightarrow{MO} + \overrightarrow{PM} + \overrightarrow{OP}$$

$$\overrightarrow{OP} + \overrightarrow{KO} + \overrightarrow{NK}$$

$$\overrightarrow{KN} - \overrightarrow{ON} + \overrightarrow{OK}$$

Application 2

Soit A, B et C trois points du plan, I le milieu de AB et J le milieu de AC.

- **1.** Montrer que $\overrightarrow{CA} + \overrightarrow{CB} = 2\overrightarrow{CI}$.
- **2.** Montrer que $\overrightarrow{BC} = 2\overrightarrow{IJ}$.

Application 3

Soit A, B, C et D quatre points du plan. Démontrer les égalités suivantes :

$$\overrightarrow{CA} + \overrightarrow{BC} + \overrightarrow{AB} = \overrightarrow{0}$$

$$\overrightarrow{AC} + \overrightarrow{DB} = \overrightarrow{AB} + \overrightarrow{DC}$$

$$\overrightarrow{BC} + \overrightarrow{DA} - \overrightarrow{DC} = \overrightarrow{BA}$$

$$\overrightarrow{BD} - \overrightarrow{AC} + \overrightarrow{CB} = \overrightarrow{CA} - \overrightarrow{DC}$$

Exercice 3

Soit I le milieu d'un segment $\lceil AB \rceil$ et M un point n'appartenant pas à la droite (AB).

- **1.** Construire les points C et D tels que : $\overrightarrow{IC} = \overrightarrow{IA} + \overrightarrow{IM}$ et $\overrightarrow{ID} = \overrightarrow{IB} + \overrightarrow{IM}$
- 2. Quelle est la nature des quadrilatères AIMC et IBDM?
- **3.** Démontrer que M est le milieu de $\lceil CD \rceil$.
- **4.** Démontrer que $\overrightarrow{IC} = \overrightarrow{BM}$.
- **5.** Soit E le symétrique de I par rapport à M.
- a. Traduire cette propriété par une égalité vectorielle.
- **b.** Démontrer que $\overrightarrow{IC} + \overrightarrow{ID} = \overrightarrow{IE}$.

III. Produit d'un vecteur par un réel et colinéarité

1. Produit d'un vecteur par un réel

Définition

u est un vecteur non nul et k un nombre réel non nul.

On appelle produit du vecteur \vec{u} par le réel k, le vecteur noté $k\vec{u}$:

- De même direction u;
- De même sens que u si k > 0, et de sens contraire si k < 0;
- De norme égale à $||\vec{ku}|| = |\vec{k}| \times ||\vec{u}||$.

k>0 $k\overrightarrow{u}$

k < 0 $k\vec{u}$

Exemple avec \vec{u} , $2\vec{u}$ et $-3\vec{u}$.

Propriété

Pour tous vecteurs \vec{u} et \vec{v} et tous réels k et k', on a :

$$k(\vec{u} + \vec{v}) = k\vec{u} + k\vec{v}$$

$$(k+k')\vec{u} = k\vec{u} + k'\vec{u}$$

$$k(k'\vec{u}) = (kk')\vec{u}$$

 $\overrightarrow{ku} = \overrightarrow{0}$ ssi k = 0 ou $\overrightarrow{u} = \overrightarrow{0}$.

2. Colinéarité de deux vecteurs

Définition

Deux vecteurs \vec{u} et \vec{v} sont colinéaires signifie qu'ils ont même direction, c'est-à-dire qu'il existe un nombre réel k tel que $\vec{u} = k\vec{v}$.

Seconde Page 6 sur 9

Exemple

Soit \vec{u} et \vec{v} deux vecteurs du plan tels que $\vec{v} = -3\vec{u}$, alors les vecteurs \vec{u} et \vec{v} sont colinéaires.

Propriété

- A, B, C et D étant quatre points deux à deux distincts du plan, dire que les droites (AB) et (CD) et sont parallèles équivaut à dire que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.
- Dire que les points A, B et C sont alignés équivaut à dire que les vecteurs \overrightarrow{AB} et \overrightarrow{AC} sont colinéaires.

Application

Démontrer le théorème de la droite des milieux.

IV. Coordonnées d'un vecteur

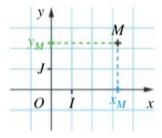
1. Repère orthonormé

Définition

Un repère du plan, défini par trois points non alignés O, I et J est orthonormé lorsque le triangle OIJ est rectangle isocèle en O.

Le point O est l'origine du repère, la droite (OI) est l'axe des abscisses et la droite (OJ) est l'axe des ordonnées.

On a OI = OJ = 1 unité.



Remarque

- Le repère (O, I, J) se note également $(O; \overrightarrow{OI}, \overrightarrow{OJ})$ ou encore $(O; \overrightarrow{i}, \overrightarrow{j})$ en posant $\overrightarrow{i} = \overrightarrow{OI}$ et $\overrightarrow{j} = \overrightarrow{OJ}$.
- Dans un repère, tout point M est repéré par un unique couple de réels (x; y) appelé coordonnées. On note M(x; y), x est l'abscisse et y l'ordonnée du point M.

Seconde Page 7 sur 9

2. Coordonnées d'un vecteur

Propriété

- Pour tout point M(x; y) dans un repère $(O; \vec{i}, \vec{j})$ on a : $\overrightarrow{OM} = x\vec{i} + y\vec{j}$.

 On dit que le vecteur \overrightarrow{OM} a pour coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$ dans la base $(\vec{i}; \vec{j})$.
- Pour tout vecteur \vec{u} dans un repère $(O; \vec{i}, \vec{j})$, il existe un unique couple de réels (x; y) tel que $\vec{u} = x\vec{i} + y\vec{j}$. On dit que le vecteur \vec{u} a pour coordonnées $\begin{pmatrix} x \\ y \end{pmatrix}$ dans la base $(\vec{i}; \vec{j})$

Propriété

Soient $\vec{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$ dans un repère $\left(O; \vec{i}, \vec{j} \right)$ et k un réel.

- $\vec{u} = \vec{v}$ équivaut à $\begin{cases} x = x' \\ y = y' \end{cases}$.
- Le vecteur $\overrightarrow{u} + \overrightarrow{v}$ a pour coordonnées $\begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$.
- Le vecteur \vec{ku} a pour coordonnées $\begin{pmatrix} kx \\ ky \end{pmatrix}$.

Remarque

Le vecteur $-\overrightarrow{u}$ a pour coordonnées (-x;-y).

Exercice 4

Dans le repère (O, \vec{i}, \vec{j}) , on donne $\vec{u} \begin{pmatrix} -3 \\ b+1 \end{pmatrix}$ et $\vec{v} \begin{pmatrix} 2a-1 \\ 3 \end{pmatrix}$.

Déterminer les réels a et b tel que $\vec{3u} = -\vec{v}$.

Propriété

Soient $A(x_A; y_A)$ et $B(x_B; y_B)$ dans un repère $(O; \vec{i}, \vec{j})$.

Le vecteur \overrightarrow{AB} a pour coordonnées $\begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$.

Seconde Page 8 sur 9

Exercice 5

Dans le repère (O, \vec{i}, \vec{j}) , on considère les points A(-5, 2), B(-3, 1), C(0, 5) et D(2, 4).

- 1. Déterminer les coordonnées des vecteurs AB et CD. Que peut-on en déduire ?
- 2. Déterminer les coordonnées du point E tel que ABCE soit un parallélogramme.
- **3.** Montrer que C est le milieu de [ED].
- **4.** Déterminer les coordonnées des points F, G et H tels que :

$$\overrightarrow{AF} = \overrightarrow{AB} + \overrightarrow{ED}$$

$$\overrightarrow{BG} = 4\overrightarrow{AB} - 3\overrightarrow{ED} \qquad \overrightarrow{CH} = 2\overrightarrow{AH} - \overrightarrow{AB}$$

$$\overrightarrow{CH} = 2\overrightarrow{AH} - \overrightarrow{AB}$$

3. Critère de colinéarité

Propriété

Soient $\vec{u} \begin{pmatrix} x \\ v \end{pmatrix}$ et $\vec{v} \begin{pmatrix} x' \\ v' \end{pmatrix}$ dans un repère $\left(O; \vec{i}, \vec{j} \right)$.

- On appelle déterminant des vecteurs \vec{u} et \vec{v} le nombre $\operatorname{Det}(\vec{u},\vec{v}) = xy' x'y$
- \vec{u} et \vec{v} sont colinéaires ssi leurs coordonnées ssi $\text{Det}(\vec{u};\vec{v}) = 0$

Exercice 6

On considère les vecteurs $\vec{u}(-6;3)$, $\vec{v}(2;-1)$ et $\vec{w}(4;2)$ dans le repère $(\vec{O},\vec{i},\vec{j})$.

Étudier la colinéarité des vecteurs u et v, puis des vecteurs u et w.

Exercice 7

Soit les points A(-1;1), B(3;2), C(-2;-3) et D(6;-1).

Démontrer que les droites (AB) et (CD) sont parallèles.

Exercice 8

Soit les points B(3;2), D(6;-1) et E(5;0).

Démontrer que les points B, D et E sont alignés.

Exercice 9

Déterminer la valeur de x pour laquelle les vecteurs $\vec{u}(2;5)$ et $\vec{v}(x;3)$ sont colinéaires.

Exercice 10

On donne les points E(-1,-2), F(3,-4) et G(4,7).

- 1. Calculer les coordonnées du vecteur $\overrightarrow{EF} + \overrightarrow{EG}$.
- 2. En déduire les coordonnées du point H tel que EFHG soit un parallélogramme.

Seconde Page 9 sur 9