04: Limites de fonctions

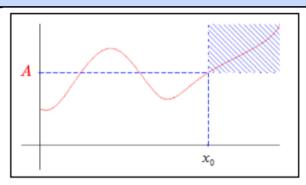
I. Limites d'une fonction en l'infini

1. Limite infinie

Définition

On dit que la limite de f en $+\infty$ est égale à $+\infty$ lorsque tout intervalle A; $+\infty$ contient toutes les valeurs f(x) dès que x est assez grand.

On écrit $\lim f(x) = +\infty$.



Quelle que soit la valeur de A choisie, f(x) dépassera toujours A pour x assez grand.

Remarque

On définit de manière analogue $\lim_{x \to +\infty} f(x) = -\infty$, $\lim_{x \to -\infty} f(x) = +\infty$ et $\lim_{x \to -\infty} f(x) = -\infty$.

Propriété: Limites de référence

$$\lim_{x \to +\infty} x^n = +\infty$$

$$\lim_{x \to +\infty} x^n = +\infty \qquad \qquad \lim_{x \to +\infty} \sqrt{x} = +\infty \qquad \qquad \lim_{x \to +\infty} e^x = +\infty$$

$$\lim_{x \to +\infty} e^x = +\infty$$

$$\lim_{n \to \infty} x^{2n} = +\infty$$

$$\lim_{n \to \infty} x^{2n+1} = -\infty$$

2. Limite finie et asymptote horizontale

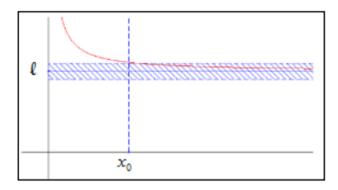
Définition

On dit que la limite de f a pour limite L lorsque x tend vers $+\infty$ lorsque tout intervalle ouvert contenant L contient toutes les valeurs f(x) dès que x est assez grand.

On écrit $\lim f(x) = L$.

On dit alors que la droite d'équation y = L est asymptote horizontale à C_f en $+\infty$, où C_f est la courbe représentative de la fonction f.

www.mathselbaz.com



Remarque

On définit de manière analogue $\lim_{x \to a} f(x) = L$.

Propriété : Limites de référence

$$\lim_{x \to -\infty} \frac{1}{x^n} = 0$$

$$\lim_{x \to +\infty} \frac{1}{x^n} = 0 \qquad \qquad \lim_{x \to -\infty} e^x = 0$$

$$\lim_{x\to -\infty} e^x = 0$$

II. Limites d'une fonction en un nombre réel

1. Limite infinie et asymptote verticale

Définition

On dit que f a pour limite $+\infty$ en a si tout intervalle A; $+\infty$ contient toutes les valeurs de f(x) dès que x est suffisamment proche de a.

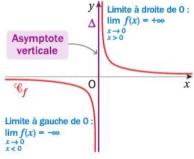
On note : $\lim_{x \to a} f(x) = +\infty$.

On dit alors que la droite d'équation x = a est asymptote verticale à C_f .

Exemple

Concernant la fonction inverse : $\lim_{n \to \infty} \frac{1}{n} = -\infty$

$$\lim_{\substack{x \to 0 \\ x > 0}} \frac{1}{x} = +\infty$$



Sa courbe représentative admet l'axe des ordonnées (x = 0) comme asymptote verticale.

III. Opérations sur les limites

a peut désigner $+\infty$, $-\infty$ ou un nombre réel.

1. <u>Limite d'une somme</u>

$\lim_{x\to a} f\left(x\right)$	L	L	L	+∞	-∞	+∞
$\lim_{x\to a}g\left(x\right)$	L'	+∞		+∞		-8
$\lim_{x \to a} f(x) + g(x)$	L+L'	+∞	-∞	+∞	-∞	FI

2. Limite d'un produit

$\lim_{x \to a} f(x)$	L	L	8	0
$ \lim_{x\to a}g\left(x\right) $	L'	8	8	8
$\lim_{x \to a} f(x) \times g(x)$	$L \times L'$	8	8	FI

On applique la règle des signes pour déterminer le signe du produit.

Exemple
$$\lim_{x \to +\infty} (2-x)(1-x^2) = +\infty$$

$$\operatorname{car} \lim_{x \to +\infty} (2-x) = -\infty \text{ et } \lim_{x \to +\infty} (1-x^2) = -\infty$$

3. Limite d'un quotient

$\lim_{x\to a}f\left(x\right)$	L	$L \neq 0$	L	∞	∞	0
$\lim_{x\to a}g\left(x\right)$	L'≠0	0	∞	L	8	0
$\lim_{x \to a} \frac{f(x)}{g(x)}$	$\frac{L}{L'}$	8	0	8	FI	FI

On applique la règle des signes pour déterminer le signe du quotient.

Remarque

Il y a 4 formes indéterminées qui sont :
$$\infty - \infty$$
 $\infty \times 0$ $\frac{\infty}{\infty}$ $\frac{0}{0}$

Application 1

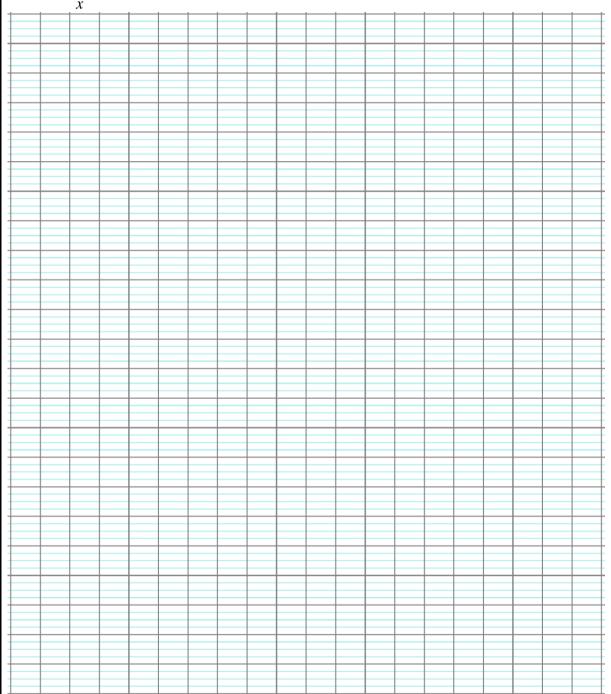
Déterminer les limites suivantes :

1.
$$\lim_{x \to +\infty} (5x^3 - 3x^2 + 2x + 1)$$

$$2. \lim_{x \to -\infty} \frac{2x^2 - x + 1}{3x^2 + 5}$$

$$3. \lim_{x \to -\infty} \frac{e^x + 2}{3 - \frac{1}{x}}$$

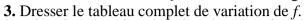
4.
$$f(x) = \frac{2x-7}{x^2-1}$$
 limites en 1.

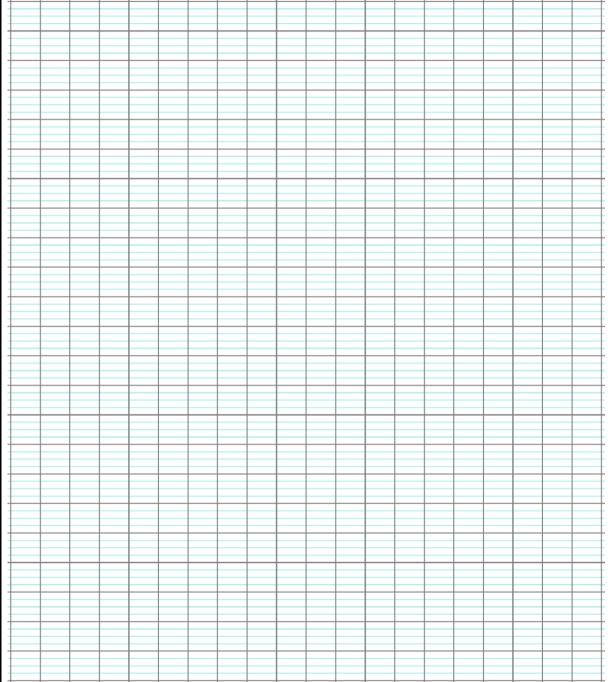


Application 2

Soit f fonction définie sur $\mathbb{R} \setminus \{5\}$ par $f(x) = \frac{x^2}{5-x}$.

- 1. Déterminer la limite de f en $+\infty$ et en $-\infty$. Interpréter le résultat.
- 2. Déterminer la limite de \hat{f} en 5 à droite et à gauche. Interpréter le résultat.





IV. Limites par comparaison

a et L sont deux réels ou $+\infty$ ou $-\infty$.

Théorème de comparaison

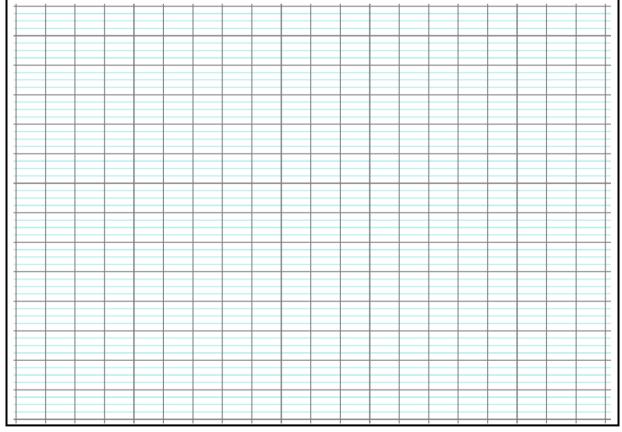
Soit f et g deux fonctions telles que, pour x proche de a, on a $g(x) \le f(x)$.

- Si $\lim_{x \to a} g(x) = +\infty$, alors $\lim_{x \to a} f(x) = +\infty$. Si $\lim_{x \to a} f(x) = -\infty$, alors $\lim_{x \to a} g(x) = -\infty$.

Application 3

Soit f la fonction définie sur \mathbb{R} telle que $f(x) \le x^3 - \frac{1}{x}$.

- **1.** Déterminer $\lim_{x \to -\infty} f(x)$.
- **2.** Peut-on déterminer $\lim_{x \to +\infty} f(x)$?



Théorème d'encadrement

Soit f, g et h trois fonctions telles que, pour x proche de a, on a $g(x) \le f(x) \le h(x)$.

Si
$$\lim_{x\to a} g(x) = \lim_{x\to a} h(x) = L$$
, alors $\lim_{x\to a} f(x) = L$.

Exemple

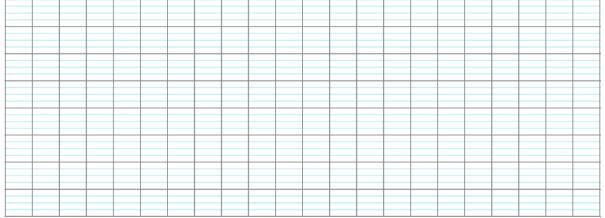
f est la fonction définie sur $]0; +\infty[$ par $f(x) = \frac{\sin x}{x}$.

On a $-1 \le \sin x \le 1$ et comme x > 0, alors $\frac{-1}{x} \le \frac{\sin x}{x} \le \frac{1}{x}$.

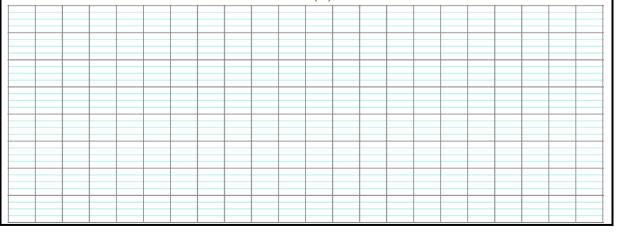
Comme $\lim_{x \to +\infty} -\frac{1}{x} = \lim_{x \to +\infty} \frac{1}{x} = 0$, alors $\lim_{x \to +\infty} \frac{\sin x}{x} = 0$

Application 4

1. Déterminer les limites en $+\infty$ et en $-\infty$ de la fonction $f(x) = x + \cos x$.



2. Déterminer la limite en $+\infty$ de la fonction $g(x) = \cos x \cdot e^{-x}$.



3. Déterminer les limites en $-\infty$ de la fonction $h(x) = \frac{2x^2 + \sin x}{x-1}$.

Propriété : Fonction exponentielle

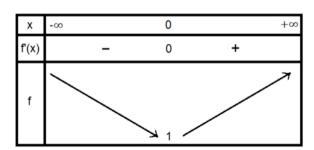
$$\lim_{x \to -\infty} e^x = 0 \qquad \lim_{x \to +\infty} e^x = +\infty$$

Démonstration

Posons
$$f(x) = e^x - x$$
.

$$f'(x) = e^x - 1$$

Posons
$$f'(x) \ge 0 \Leftrightarrow e^x - 1 \ge 0 \Leftrightarrow e^x \ge 1 \Leftrightarrow x \ge 0$$



Donc $f(x) \ge 1 > 0$ cad $e^x > x$.

Comme $\lim_{x \to +\infty} x = +\infty$, alors $\lim_{x \to +\infty} e^x = +\infty$.

Avec un changement de variable on démontre de même que $\lim_{x\to -\infty} e^x = 0$

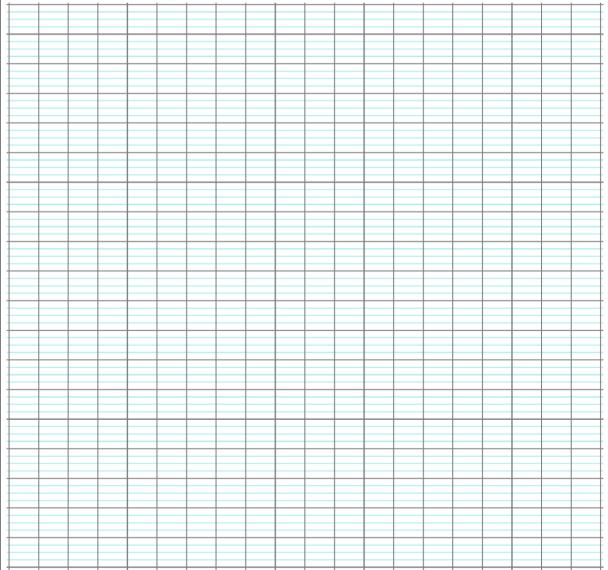
Propriété : Croissances comparées

Pour tout entier naturel n, on a : $\lim_{x \to +\infty} \frac{e^x}{x^n} = +\infty$ et $\lim_{x \to -\infty} x^n e^x = 0$

Application 5

Soit f la fonction définie sur]0; + ∞ [par $f(x) = e^x - \frac{x^2}{2}$.

- **1.** Déterminer f''(x), dérivée seconde de f.
- **2.** En déduire le signe de f''(x) puis les variations de f' sur $]0;+\infty[$.
- 3. En déduire alors le signe de f'(x) puis les variations de f sur $]0;+\infty[$.
- **4.** En déduire alors le signe de f(x).
- **5.** En déduire alors $\lim_{x\to +\infty} \frac{e^x}{x}$



Remarque

En cas de forme indéterminée, l'exponentielle l'emporte sur toute puissance de x.

