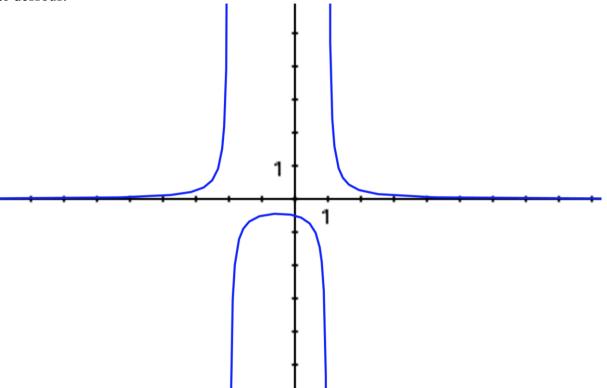
04: Limites de fonctions

Exercice 1

Soit une fonction f définie sur $]-\infty;-2[\,\cup\,]-2;1[\,\cup\,]1;+\infty[$ et sa courbe représentative donnée ci-dessous.



Déterminer graphiquement les limites aux bornes de son ensemble de définition (c'est-à-dire en $-\infty$, en $+\infty$, en -2 et en 1 à gauche et à droite.)

Exercice 2

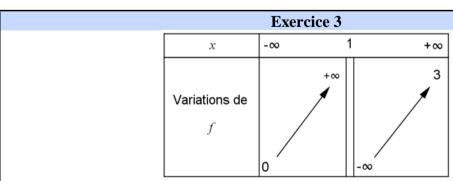
Que peut-on dire des limites suivantes concernant les asymptotes horizontales ou verticales ?

$$\mathbf{1.} \lim_{x \to +\infty} f(x) = -2$$

$$2. \lim_{x \to +\infty} f(x) = -\infty$$

$$3. \lim_{x \to 3} f(x) = +\infty$$

$$4. \lim_{x \to -\infty} f(x) = 0$$



- 1. Préciser les limites de f qui figurent dans ce tableau.
- 2. Quelles conséquences graphiques peut-on en déduire ?

Exercice 4

Calculer les limites suivantes et donner lorsque c'est possible une interprétation géométrique de ces limites.

1.
$$\lim_{x \to -\infty} (5x^3 - 3x + 1)$$

1.
$$\lim_{x \to -\infty} \left(5x^3 - 3x + 1 \right)$$
 2. $\lim_{x \to +\infty} \frac{3x^2 - 5x + 1}{6x^2 + 1}$ **3.** $\lim_{x \to -\infty} \frac{x^3 - x}{2x + 1}$

3.
$$\lim_{x \to -\infty} \frac{x^3 - x}{2x + 1}$$

4.
$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{2x - 5}{x^2 - 4x + 3}$$

4.
$$\lim_{\substack{x \to 1 \\ x < 1}} \frac{2x - 5}{x^2 - 4x + 3}$$
 5. $\lim_{\substack{x \to 3 \\ x < 3}} \frac{2x - 5}{x^2 - 4x + 3}$

6.
$$\lim_{\substack{x \to 2 \\ x > 2}} \frac{2x - 4}{x^2 - 3x + 2}$$

Exercice 5

Calculer les limites suivantes :

1.
$$\lim_{x \to -\infty} \left(e^x + 2x \right)$$

$$2. \lim_{x \to +\infty} \left(e^x - x \right)$$

3.
$$\lim_{x\to -\infty} \left(xe^x - x\right)$$

4.
$$\lim_{x \to 0} e^{\frac{2x-1}{3x+1}}$$

5.
$$\lim_{x \to -\infty} \frac{e^x + e^{-x}}{x}$$
 6. $\lim_{x \to +\infty} \frac{x^2 + 1}{e^x}$

6.
$$\lim_{x \to +\infty} \frac{x^2 + 1}{e^x}$$

Exercice 6

Déterminer les limites suivantes :

1.
$$\lim_{x \to +\infty} \sqrt{\frac{2x^2 - 1}{3x^2 + 1}}$$

2.
$$\lim_{x \to +\infty} \frac{e^{-x} + 1}{2e^{-x} + 5}$$

3.
$$\lim_{x\to +\infty} \cos\left(\frac{\pi x-1}{2x+1}\right)$$

Exercice 7

Soit f la fonction définie sur \mathbb{R} par $f(x) = (1 + 2\cos^2 x)e^{1-x}$.

- **1.** Montrer que pour tout réel x on $a: e^{1-x} \le f(x) \le 3e^{1-x}$
- **2.** En déduire les limites de f en $+\infty$ et en $-\infty$.
- 3. Donner si c'est possible une interprétation géométrique de ces limites.

Exercice 8

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{9}{2}e^{-2x} - 3e^{-3x}$.

On appelle C_f la courbe représentative de la fonction f.

- 1. Déterminer $\lim_{x\to +\infty} f(x)$ et interpréter le résultat.
- **2. a.** Montrer que, pour tout réel x, on a : $f(x) = 3e^{-2x} \left(\frac{3}{2} e^{-x}\right)$.
- **b.** En déduire $\lim_{x \to +\infty} f(x)$ et interpréter le résultat.
- 3. Étudier les variations de la fonction f et dresser son tableau de variations.

www.mathselbaz.com

Exercice 9

Soit f la fonction définie sur \mathbb{R} par $f(x) = \sqrt{x^2 + 1} - x$.

- **1.** Déterminer la limite de f en $-\infty$.
- **2. a.** Montrer que pour tout réel x, $f(x) = \frac{1}{\sqrt{x^2 + 1} + x}$
- **b.** En déduire la limite de la fonction f en $+\infty$.

Exercice 10

Soit f la fonction définie sur \mathbb{R} par : $f(x) = \frac{x^2 + 2x + 3}{x^2 + 2}$ et C_f sa courbe représentative.

- **1. a.** Justifier que la courbe C_f admet une asymptote d parallèle à l'axe des abscisses.
- **b.** Etudier la position relative entre C_f et d.
- **2. a.** Calculer f'(x) pour tout réel x.
- **b.** Dresser le tableau de variation de f sur $\mathbb R$.

Exercice 11

Soit f la fonction définie sur $]0;+\infty[$ par $f(x)=\frac{2e^x+1}{e^x-1}$ et C_f sa courbe représentative.

- 1. Calculer la limite de f en 0. Interpréter le résultat.
- **2. a.** Montrer que pour tout réel x > 0, $f(x) = \frac{2 + e^{-x}}{1 e^{-x}}$.
- **b.** Calculer la limite de f en $+\infty$. Interpréter le résultat.