10 : Combinatoire et dénombrement

I. Cardinal d'un ensemble et principal additif

1. Cardinal d'un ensemble fini

Définition

Le cardinal d'un ensemble E est le nombre d'éléments de E. On le note card (E).

Exemple

- $E = \{a; b; c\}$ est un ensemble fini à 3 éléments.
- \varnothing est appelé ensemble vide. card $(\varnothing) = 0$

2. Principe additif

Définition

2 ensembles A et B dont l'intersection est vide sont disjoints. On note $A \cap B = \emptyset$.

Propriété

Si E_0 , E_1 , ..., E_p sont p ensembles finis deux à deux disjoints, alors :

$$\operatorname{card}(E_1 \cup E_2 \cup ... \cup E_p) = \operatorname{card}(E_1) + \operatorname{card}(E_2) + ... + \operatorname{card}(E_p)$$

Exemple

$$A = \{a; b; c\}$$
 et $B = \{d; e\}$.

On a $A \cap B = \emptyset$ donc A et B sont disjoints.

$$A \cup B = \{a; b; c; d; e\}$$
, donc card $(A \cup B) = \operatorname{card}(A) + \operatorname{card}(B) = 3 + 2 = 5$.

Application 1

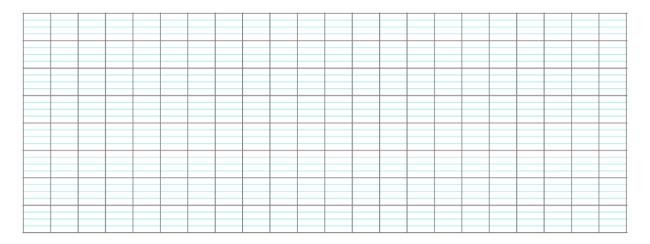
On interroge un groupe de skieurs, et on a :

14 skieurs pratiquent le ski de piste, 7 pratiquent le ski de fond, 4 pratiquent les deux sports.

3 ne pratiquent rien.

Combien de skieurs y a-t-il dans ce groupe ?

Terminale spécialité Page 1 sur 13



Application 2

Parmi 40 secrétaires, 8 connaissent le russe, 15 l'anglais et 9 l'allemand. D'autre part, 4 parlent l'anglais et l'allemand, 5 l'anglais et le russe, 2 l'allemand et le russe et 2 les trois langues. Combien de secrétaires ne connaissent aucune de ces trois langues ?

3. Produit cartésien

Définition

E, F et G sont trois ensembles.

- Le produit cartésien de E par F est l'ensemble des couples $\left(a,b\right)$ où $a\in E$ et $b\in F$. Il est noté $E\times F$.
- Le produit cartésien $E \times F \times G$ est l'ensemble des triplets (a,b,c) où $a \in E$, $b \in F$ et $c \in G$.
- Le produit cartésien $E_1 \times E_2 \times ... \times E_p$ est l'ensemble des p-uplets $\left(a_1, a_2, ..., a_p\right)$ où $a_1 \in E_1$, $a_2 \in E_2$, ..., $a_p \in E_p$.

Terminale spécialité Page 2 sur 13

Notation

$$E^2 = E \times E$$
 $E^k = \underbrace{E \times E \times ... \times E}_{k \text{ fois}}$

Exemple

• $E = \{a;b;c\}$ et $F = \{1;2\}$. Alors $E \times F = \{(a,1);(a,2);(b,1);(b,2);(c,1);(c,2)\}$. On peut représenter le produit cartésien par un arbre :

Un élément de $E \times F$ est un chemin de l'arbre.

• (a,b,a,c,b) est un 5-uplet de E. $(a,b,a,c,b) \in E^5$. $E^2 = \{(a,a);(a,b);(a,c);(b,a);(b,b);(b,c);(c,a);(c,b);(c,c)\}$

Remarque

- L'ordre compte
- Répétition

4. Principe multiplicatif

Propriété

- Si $E_1, E_2, ..., E_p$ sont p ensembles finis, alors : $\operatorname{card}(E_1 \times E_2 \times ... \times E_p) = \operatorname{card}(E_1) \times \operatorname{card}(E_2) \times ... \times \operatorname{card}(E_p)$
- Si card(E) = n, alors card $(E^p) = n^p$

Exemple

On reprend l'exemple précédent.

$$\operatorname{card}(E \times F) = \operatorname{card}(E) \times \operatorname{card}(F) = 3 \times 2 = 6$$
 $\operatorname{card}(E^2) = 3^2 = 9$

 $\operatorname{card}(E^5) = 3^5 = 343$ C'est le nombre de 5-uplets d'éléments de E.

Application 3

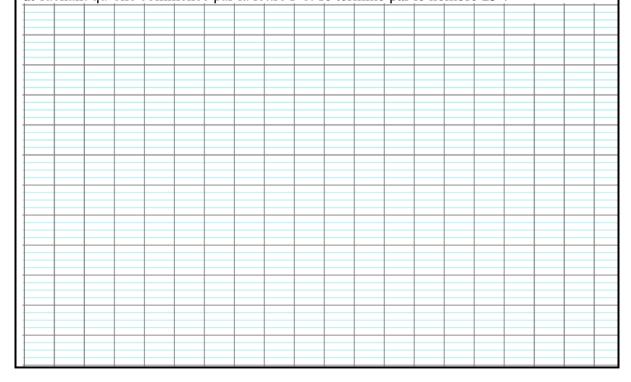
Un restaurant propose sur sa carte 3 entrées, 4 plats et 2 desserts.

- 1. Combien de menus différents sont composés d'une entrée, d'un plat et d'un dessert ?
- 2. Même question si le dessert est une tarte aux pommes imposée.

Application 4

Pour ouvrir un coffre-fort il faut rentrer la bonne combinaison constituée de 2 lettres et de 4 chiffres

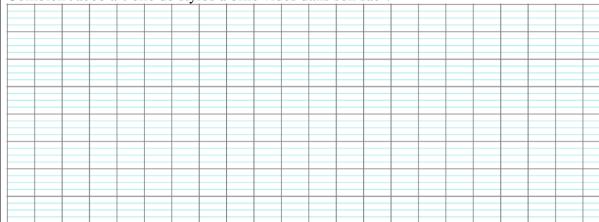
- **1.** Combien y a-t-il de combinaisons différentes ?
- 2. Combien y a-t-il de combinaisons différentes :
- a. sachant qu'elle se termine par 5?
- **b.** sachant qu'elle se termine par un chiffre pair ?
- **c.** sachant qu'elle commence par la lettre C?
- **d.** sachant qu'elle commence par la lettre F et se termine par le nombre 25 ?



Terminale spécialité Page 4 sur 13

Jacob a 26 stylos au fond de son sac. Parmi eux, 14 sont des stylos à bille, 11 n'ont plus d'encre, 5 ne sont ni des stylos à bille, ni vides.

Combien Jacob a-t-elle de stylos à bille vides dans son sac ?



II. Arrangements et permutations

n et p sont des nombres entiers naturels avec $p \le n$. E est un ensemble à n éléments.

1. Factorielle

Définition

On appelle factorielle n et on note n!, le produit de tous les nombres entiers de 1 à n. $n! = n \times (n-1) \times (n-2) \times ... \times 3 \times 2 \times 1$

TI NSpire: Menu 51

2. Arrangement

Définition

Un arrangement de p éléments d'un ensemble E est un p-uplet d'éléments <u>distincts</u> de E.

Exemple

On considère l'ensemble $A = \{b; j; n; o; r; u\}$.

(j,o,u,r) et (b,u,r,o) sont des arrangements de 4 éléments de A.

(b,o,n), (r,o,u) et (b,u,j) sont des arrangements de 3 éléments de A.

(b,o,n,j,o,u,r) n'est pas un arrangement de A car l'élément o est répété 2 fois.

C'est un 7-uplet de *A*.

Terminale spécialité Page 5 sur 13

Remarques

- L'ordre compte
- Pas de répétition

Propriété

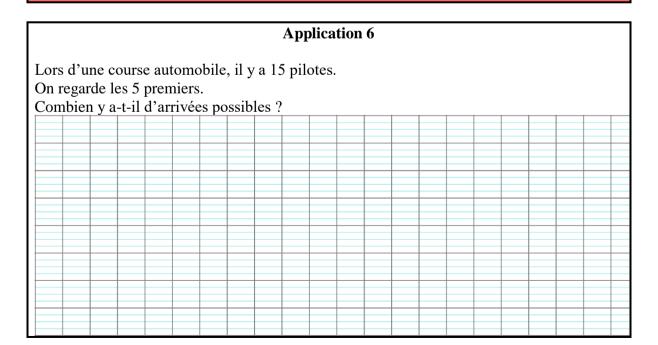
Le nombre d'arrangements de p éléments de E est :

$$n \times (n-1) \times (n-2) \times \dots \times (n-p+1) = \frac{n!}{(n-p)!}$$

Exemple

- $A = \{b; j; n; o; r; u\}$. Pour former un 4-uplet (ou quadruplet) d'éléments distincts de A, on a 6 choix pour la $1^{\text{ère}}$ lettre, puis 5 choix pour la $2^{\text{ème}}$ lettre (car il n'y a pas de répétition), puis 4 choix pour la $3^{\text{ème}}$ lettre et enfin 3 choix pour la $4^{\text{ème}}$ lettre. En appliquant le principe multiplicatif, le nombre d'arrangements de 4 éléments de A est $6 \times 5 \times 4 \times 3 = \frac{6!}{(6-4)!} = 360$.
- On s'intéresse au classement des trois gagnants dans un tournoi de jeux vidéo opposant huit joueurs, c'est-à-dire aux trois joueurs arrivés en tête et à leur ordre d'arrivée. En notant B l'ensemble des huit joueurs, les classements sur le podium possibles sont les arrangements de trois éléments de B: il y en a $\frac{8!}{(8-3)!}$ = 336.

TI NSpire: Menu 52



Terminale spécialité

3. Permutation

Définition

Une permutation de E est un arrangement des n éléments de E.

Exemple

On considère l'ensemble $G = \{a; b; c\}$

(a,b,c), (a,c,b), (b,a,c), (b,c,a), (c,a,b), (c,b,a) sont les 6 permutations de G.

Propriété

Le nombre de permutations de E est n!

Exemple

On considère l'ensemble $A = \{b; j; n; o; r; u\}$.

Le nombre de permutations de A est 6! = 720

Application 7

Bob souhaite ranger verticalement sur une même étagère 5 livres de biologie, 3 livres de mathématiques et 2 livres d'histoire.

1. Combien existe-t-il de façons différentes de les ranger ?

2. Combien existe-t-il de façons différentes de les ranger en les groupant par matière ?

Terminale spécialité Page 7 sur 13

Exercice 1

Une course hippique oppose 17 chevaux.

1. Un tiercé gagnant consiste à donner les 3 chevaux arrivés en tête parmi les 17 chevaux participant à la course, ainsi que l'ordre d'arrivée de ces trois chevaux. Combien de tiercés différents existe-t-il pour cette course ?

2. Combien de quintés (5 chevaux arrivés en tête, en tenant compte de l'ordre d'arrivée)

Exercice 2																						
Combien y a-t-il d'anagrammes du mot :																						
Maths																						
																						+
D																						#
Ber	nard																					+
																						#
																						Ŧ
Pap	a	1	i	1	i	i	i		1	i		1	1	i	i	ī	i	i	1	1	1	
																						Ī
A																						+
Ana	ınas																					+
																						#
																						ŧ
t					İ		i	1	i	i	<u> </u>	i	i	i	i		i	i	i	İ	<u> </u>	\pm

Terminale spécialité Page 8 sur 13

III. Combinaison

1. Combinaison d'éléments d'un ensemble

Définition

Une combinaison de p éléments de E est un sous-ensemble de E possédant p éléments.

Exemple

Si $E = \{ \text{bleu} ; \text{rouge} ; \text{orane} ; \text{noir} ; \text{vert} \}$, alors les ensembles (bleu, noir, vert) et (noir, orange, bleu) sont deux combinaisons de 3 éléments de E.

Remarques

- L'ordre ne compte pas
- Pas de répétition

2. Calcul du nombre de combinaisons

Propriété

Soit *E* un ensemble à *n* éléments.

Le nombre de combinaisons de p éléments de E, noté $\binom{n}{p}$ est égal à :

$$\binom{n}{p} = \frac{n!}{p!(n-p)!} = \frac{n \times (n-1) \times (n-2) \times \dots \times (n-p+1)}{p \times (p-1) \times (p-2) \times \dots \times 2 \times 1}$$

 $\binom{n}{n}$ s'appelle aussi coefficient binomial.

TI NSpire: Menu 53

Cas particuliers

Pour tout entier naturel n:

$$\binom{n}{0} = 1 \qquad \qquad \binom{n}{n} = 1 \qquad \qquad \binom{n}{1} = n$$

Exercice 3

Une classe composée de 18 filles et 16 garçons va élire les 4 délégués.

Dans cet exercice, on ne distingue pas les délégués et les délégués-adjoints.

- 1. Combien existe-t-il de possibilités pour cette élection ?
- 2. Emma dit qu'elle ne souhaite pas être élue si Bastien est élu. Dans ces conditions, combien existe-t-il de possibilités ?

Propriété

- Symétrie : $\binom{n}{p} = \binom{n}{n-p}$
- Relation de Pascal : $\binom{n}{p} + \binom{n}{p+1} = \binom{n+1}{p+1}$

Démonstration

$$\binom{n}{p} + \binom{n}{p+1} = \frac{n!}{p!(n-p)!} + \frac{n!}{(p+1)!(n-p-1)!} = \frac{n!(n+1)}{p!(p+1)(n-p-1)!(n-p)}$$

$$= \frac{n!}{p!(n-p-1)!(n-p)} + \frac{n!}{(p)!(p+1)(n-p-1)!} = \frac{(n+1)!}{(p+1)!(n-p)!}$$

$$= \frac{n!(p+1)}{p!(n-p-1)!(n-p)} + \frac{n!(n-p)}{p!(p+1)(n-p-1)!} = \binom{n+1}{p+1}$$

$$= \frac{n!(p+1+n-p)}{p!(n-p-1)!(n-p)(p+1)}$$

3. Triangle de Pascal

Propriété

Le triangle de Pascal permet de calculer les coefficients binomiaux rapidement :

n	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	2	1				
3	1	3	3	1			
4	1	4	6	4	1		
5	1	5	10	10	5	1	
6	1	6	15	20	15	6	1

4. Parties d'un ensemble

Propriété

Soit *E* un ensemble à *n* éléments.

Le nombre de partie de
$$E$$
 est :
$$\sum_{p=0}^{n} \binom{n}{p} = \binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$$

Démonstration

Le nombre de sous-ensemble de E est égal à la somme des sous-ensembles à 0 éléments, à 1 éléments, à 2 éléments, ..., à n éléments.

Soit:
$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n}$$

Par ailleurs, pour construire un sous-ensemble de E, on considère n étapes où à chaque élément de E, on décide de le choisir ou de ne pas le choisir pour l'inclure dans le sous-ensemble.

Il y a donc deux possibilités par étape et il y a *n* étapes.

Il y a donc $2\times2\times...\times2$ (n facteurs) possibilités de construire un sous-ensemble de E, soit 2^n .

Donc
$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n} = 2^n$$

Soit : $E = \{1, 2, 3\}$.

Alors toutes les parties de E sont :

$$\emptyset$$
, $\{1\}$, $\{2\}$, $\{3\}$; $\{1,2\}$; $\{1,3\}$; $\{2,3\}$; $\{1,2,3\}$.

Il y a donc 8 parties de E, en effet $2^3 = 8$.

Exercice 4

On dispose d'un jeu de 32 cartes.

Combien de façons différentes existe-t-il de choisir :

- 1. 7 cartes parmi les 32 ?
- 2. 13 cartes dans le jeu?
- 3. 3 cartes parmi les 8 cœurs?
- **4.** 2 cartes parmi les 8 piques ?

5. une main de 5 cartes contenant 3 cœurs et 2 piques?

Exercice 5

Remplir une grille de loto consiste à choisir cinq numéros entre 1 et 49 (l'ordre ne compte pas), puis un numéro « chance » de 1 à 10.

1. Combien de grilles différentes peut-on remplir ?

2. Parmi ces grilles, combien seront constituées uniquement de nombres pairs ?

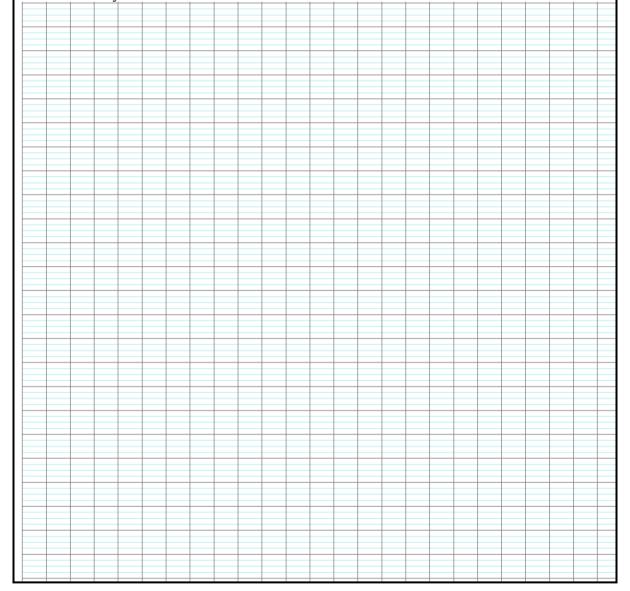
Terminale spécialité Page 12 sur 13

Exercice 5 : Contrée

On considère le jeu de la contrée.

Parmi les 32 cartes on en choisit 8 pour former une main.

- **1.** Combien il y a de mains possibles ?
- 2. Combien il y a de mains de la même couleur ?
- **3.** Combien il y a de mains contenant 4 as ?
- 4. Combien il y a de mains constituées d'au moins un as ?



Terminale spécialité Page 13 sur 13