

Candidats libres Sujet 1

ÉPREUVE D'ENSEIGNEMENT DE SPÉCIALITÉ

EXERCICE 1 4 points

Commun à tous les candidats

Soit f la fonction définie pour tout $x \in \mathbb{R}$ de l'intervalle]0; $+\infty[$ par : $f(x) = \frac{e^{2x}}{x}$. On donne f'', définie sur l'intervalle]0; $+\infty[$ par : $f''(x) = \frac{2e^{2x}(2x^2 - 2x + 1)}{x^3}$.

1. f est dérivable comme fonction quotient de fonctions dérivables, le dénominateur étant non nul sur l'intervalle]0; $+\infty[$.

On a: $f'(x) = \frac{2e^{2x} \times x - 1 \times e^{2x}}{x^2} = \frac{e^{2x}(2x - 1)}{x^2}$. Réponse **c.**

- **2.** Comme sur l'intervalle]0; $+\infty[$, $x^2 > 0$ et $e^{2x} > 0$, le signe de f'(x) est celui de 2x 1.
 - + $f'(x) = 0 \iff 2x 1 = 0 \iff x = \frac{1}{2}$;
 - + $f'(x) < 0 \iff 2x 1 < 0 \iff x < \frac{1}{2}$: la fonction f est décroissante sur]0; $\frac{1}{2}[$;
 - + $f'(x) > 0 \iff 2x 1 > 0 \iff x > \frac{1}{2}$: la fonction f est croissante sur $\left[\frac{1}{2}; +\infty\right[$;

Conclusion : $f(\frac{1}{2})$ est le minimum de la fonction sur]0 ; $+\infty$ [. Réponse **c.**

3. On a: $f(x) = 2 \times \frac{e^{2x}}{2x}$.

En posant X = 2x, on a $\lim_{x \to +\infty} 2x = \lim_{X \to +\infty} X = +\infty$.

On sait que $\lim_{X \to +\infty} \frac{e^X}{X} = +\infty$, donc $\lim_{x \to +\infty} f(x) = +\infty$.

Réponse a.

4. Sur]0; $+\infty$ [, $x^3 > 0$ et $2e^{2x} > 0$, donc le signe de f''(x) est celui du trinôme $2x^2 - 2x + 1$. Or $2x^2 - 2x + 1 = 2\left(x^2 - x + \frac{1}{2}\right) = 2\left[\left(x - \frac{1}{2}\right)^2 - \frac{1}{4} + \frac{1}{2}\right] = 2\left(x - \frac{1}{2}\right)^2 + \frac{1}{2}$.

Donc f''(x) somme de deux nombres positifs est positive sur]0; $+\infty$. La fonction est donc convexe sur]0; $+\infty$ [.

EXERCICE 2 5 points

Commun à tous les candidats

PARTIE I

1. On traduit la situation à l'aide d'un arbre pondéré :

 $0,98 \qquad T$ $0,05 \qquad D \qquad 0,02 \qquad \overline{T}$ $0,95 \qquad \overline{D} \qquad 0,97 \qquad \overline{T}$

2. a. On a: $P(D \cap T) = P(D) \times P_D(T) = 0.05 \times 0.98 = 0.049$.

- **b.** On a de même : $P(\overline{D} \cap T) = P(\overline{D}) \times P_{\overline{D}}(T) = 0,95 \times 0,3 = 0,0285.$ D'après la loi des probabilités totales : $P(T) = P(D \cap T) + P(\overline{D} \cap T) = 0,049 + 0,0285 = 0,0775.$

3. La valeur prédictive positive du test est égale à :
$$P_T(D) = \frac{P(T \cap D)}{P(T)} = \frac{P(D \cap T)}{P(T)} = \frac{0,049}{0,0775} \approx 0,6322, \text{ soit 0,632 au millième près.}$$

Comme 0,632 < 0,95 on peut en déduire que le test n'est pas efficace.

PARTIE II

- 1. Le choix de l'échantillon étant assimilé à un tirage avec remise et avec une probabilité constante de choisir un produit défectueux égale à 0,05, on peut donc dire que la variable aléatoire *X* suit une loi binomiale de paramètres n = 10 et p = 0,05.
- **2.** On a : $p(X = 0) = 0.05^{0} \times 0.95^{20}$. Donc la probabilité cherchée est $p(X \ge 1) = 1 - p(X = 0) = 1 - 0.95^{20} \approx 0.642$, soit 0.64 au centième près.
- **3.** On a : $E = n \times p = 20 \times 0,05 = 1$. Cela signifie que sur un grand nombre de tirages d'échantillons on trouvera 1 pièce défectueuse sur 20 pièces tirées.

EXERCICE 3 6 points

Commun à tous les candidats

I - Premier modèle

En 10 minutes la température a augmenté de 1,3-(-19)=1,3+19=20,3 soit une augmentation de 2,03 °C.

Selon ce premier modèle l'augmentation de la température serait au bout de 25 minutes de $25 \times 2,03 = 50,75$ (°C).

Les gâteaux seraient donc à une température de -19 + 50,75 = 31,75 (°C) alors que la température ambiante est de 25°C: c'est impossible, donc ce modèle n'est pas pertinent.

II - Second modèle

On note T_n la température des gâteaux en degré Celsius, au bout de n minutes après leur sortie du congélateur; ainsi $T_0 = -19$. On admet que pour modéliser l'évolution de la température, on doit avoir la relation suivante : pour tout n, $T_{n+1} - T_n = -0.06 \times (T_n - 25)$.

- 1. On a: $T_{n+1} T_n = -0.06 \times (T_n 25) \iff T_{n+1} T_n = -0.06 T_n + 1.5$ $\iff T_{n+1} = T_n - 0.06T_n + 1.5 \iff T_{n+1} = 0.94T_n + 1.5.$
- **2.** + Avec n = 0, la relation donne $T_1 = 0.94 \times (-19) + 1.5 = 1.5 17.86 = -16.36$;
 - + Avec n = 1, la relation donne $T_2 = 0.94 \times (-16.36) + 1.5 = 1.5 15.3784 = -13.8784$.
- **3.** On démontre par récurrence que, pour tout entier naturel n, on a $T_n \leq 25$.

Initialisation - $T_0 = -19 \le 25$; l'inégalité est vraie au rang 0.

Hérédité - Supposons que pour $n \in \mathbb{N}$, $T_n \leq 25$ alors en multipliant par 0,94 :

 $0.94T_n \le 0.94 \times 25$, soit $0.94T_n \le 23.5$.

D'où en en ajourant à chaque membre 1,5 :

 $0.94T_n + 1.5 \le 23.5 + 1.5$, soit finalement $T_{n+1} \le 25$: l'inégalité est vraie au rang n.

Conclusion : l'inégalité est vraie au rang 0 et si elle est vraie au rang n, elle l'est aussi au rang n+1.

D'après le principe de récurrence : quel que soit $n \in \mathbb{N}$, $T_n \leq 25$.

Ceci correspond à une évidence : la température des gâteaux ne peut dépasser la température ambiante.

- **4.** On sait que quel que soit $n \in \mathbb{N}$, $T_{n+1} T_n = -0.06 \times (T_n 25)$.
 - D'après la question précédente $T_n \leq 25$ soit en multipliant par 0,06 :

$$0.06T_n \leq 0.06 \times 25$$
, ou $0.06T_n \leq 1.5$

et en prenant les opposés : $-1.5 \le -0.06 T_n$ et enfin en ajoutant à chaque membre 1.5 : $0 \le -0.6 T_n + 1.5$.

On a donc démontré que quel que soit $n \in \mathbb{N}$, $T_{n+1} - T_n \ge 0$: la suite (T_n) est donc croissante.

- **5.** On a donc démontré que la suite (T_n) est croissante et majorée par 25 : d'après le théorème de la convergence monotone, cette suite converge vers une limite ℓ telle que $\ell \leq 25$.
- **6.** On pose pour tout entier naturel n, $U_n = T_n 25$.
 - **a.** Quel que soit $n \in \mathbb{N}$, $U_{n+1} = T_{n+1} 25 = 0.94 T_n + 1.5 25$ ou encore $U_{n+1} = 0.94 T_n 23.5 = 0.94 \left(T_n \frac{23.5}{0.94}\right) = 0.94 (T_n 25)$, soit finalement $T_{n+1} = 0.94 U_n$: cette égalité montre que la suite (U_n) est une suite géométrique de raison 0.94 et de premier terme $U_0 = T_0 25 = -19 25 = -44$.
 - **b.** On sait que quel soit $n \in \mathbb{N}$, $U_n = U_0 \times 0.94^n$ ou $U_n = -44 \times 0.94^n$. Or $U_n = T_n - 25 \iff T_n = U_n + 25$ ou encore $T_n = -44 \times 0.94^n + 25$, soit finalement:

$$T_n = 25 - 44 \times 0,94^n$$
, quel que soit $n \in \mathbb{N}$

c. Comme 0 < 0.94 < 1, on sait que $\lim_{n \to +\infty} 0.94^n = 0$, d'où par somme de limites :

$$\lim_{n\to+\infty}T_n=\ell=25.$$

- 7. **a.** On a : $T_{30} = 25 44 \times 0.94^{30} \approx 18,12$ soit environ 18°Cau degré près.
 - **b.** La calculatrice donne $T_{17} \approx 9,63$ et $T_{18} \approx 10,55$, donc Cécile devra déguster son gâteau entre la $17^{\rm e}$ et la $18^{\rm e}$ minute après sa sortie.
 - **c.** On complète le programme suivant, écrit en langage Python, qui doit renvoyer après son exécution la plus petite valeur de l'entier n pour laquelle $T_n \ge 10$.

```
def seuil():
n = 0
T = -19
while T < 10
    T = 25 - 0,94T
    n = n+1
return
```

EXERCICE au choix du candidat

5 points

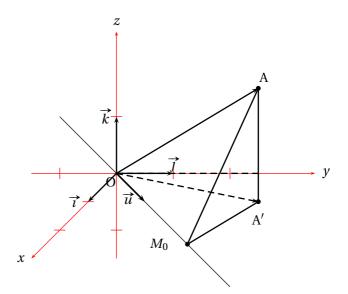
EXERCICE A

Principaux domaines abordés:

Géométrie de l'espace rapporté à un repère orthonormé; orthogonalité dans l'espace

Dans un repère orthonormé $(O; \vec{i}, \vec{j}, \vec{k})$ on considère

- le point A de coordonnées (1; 3; 2),
- le vecteur \overrightarrow{u} de coordonnées $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$



1.
$$M(x; y; z) \in (d) \iff \overrightarrow{OM} = t\overrightarrow{u}$$
, avec $t \in \mathbb{R}$, soit:
$$\begin{cases} x = t \\ y = t \\ z = 0 \end{cases}$$

2. **a.** De
$$\overrightarrow{AM} \begin{pmatrix} t-1 \\ t-3 \\ 0-2 \end{pmatrix}$$
, on calcule:

$$\mathbf{A}M^2 = (t-1)^2 + (t-3)^2 + (-2)^2 = t^2 + 1 - 2t + t^2 + 9 - 6t + 4 = 2t^2 - 8t + 14.$$

b.
$$2t^2 - 8t + 14 = 2(t^2 - 4t + 7) = 2[(t - 2)^2 - 4 + 7] = 2[(t - 2)^2 + 3].$$

La plus petite valeur de ce trinôme est obtenue quand le carré est nul, soit pour t = 2.

On a: $2t^2 - 8t + 14 \ge 6$, soit $AM^2 \ge 6 \Rightarrow AM \ge \sqrt{6}$.

La plus petite distance est $AM_0 = \sqrt{6}$ avec $M_0(2; 2; 0)$.

3. On a: $\overrightarrow{AM_0} \begin{pmatrix} 1 \\ -1 \\ -2 \end{pmatrix}$ et $\overrightarrow{u} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ est un vecteur directeur de (d).

On a : $\overrightarrow{AM_0} \cdot \overrightarrow{u} = 1 - 1 + 0 = 0$: les vecteurs sont orthogonaux donc les droites (AM_0) et d sont orthogonales.

4. \overrightarrow{u} est orthogonal au plan horizontal d'équation z = 0. Comme A' et M_0 appartiennent à ce plan le vecteur \overrightarrow{u} est orthogonal au vecteur $\overrightarrow{A'M_0}$.

Donc le vecteur \overrightarrow{u} est orthogonal à deux vecteurs non colinéaires du plan $(AA'M_0)$, donc la droite (d) est orthogonale au plan $(AA'M_0)$. Le point M_0 est donc le projeté orthogonal de O sur le plan $(AA'M_0)$, donc OM_0 est la distance la plus courte du point O au plan $(AA'M_0)$.

5. Aire de la base $AA'M_0$: on a AA' = 2 et $A'M_0^2 = (2-1)^2 + (2-3)^2 + 0^2 = 1 + 1 = 2$. D'où $A'M_0 = \sqrt{2}$.

On a donc
$$\mathscr{A}(AA'M_0) = \frac{2 \times \sqrt{2}}{2} = \sqrt{2}$$
.

D'autre part : $OM_0^2 = 2^2 + 2^2 = 8$, d'où $OM_0 = \sqrt{8} = \sqrt{4 \times 2} = 2\sqrt{2} = h$.

Finalement
$$V = \frac{\sqrt{2} \times 2\sqrt{2}}{3} = \frac{4}{3}$$
.

EXERCICE B

On considère l'équation différentielle (E) $y' = y + 2xe^x$

1. De $u(x) = x^2 e^x$, on déduit que $u'(x) = 2xe^x + x^2 e^x = e^x (x^2 + 2x) = x(x+2)e^x$.

Donc *u* solution de (*E*) si et seulement si :

 $u' = u + 2xe^x \iff 2xe^x + x^2e^x = x^2e^x + 2xe^x$ qui est vraie : u est une solution particulière de (E).

- **2.** Soit g(x) = f(x) u(x)
 - **a.** f est solution de l'équation différentielle (E) si et seulement si :

$$f'(x) = f(x) + 2xe^x$$
 (1).

Or $g(x) = f(x) - u(x) \iff f(x) = g(x) + u(x)$, d'où on déduit, les deux fonctions étant dérivables sur \mathbb{R} : f'(x) = g'(x) + u'(x).

L'égalité (1) devient :
$$g'(x) + u'(x) = g(x) + u(x) + 2xe^x$$
 (2).

Or on a vu dans la question précédente que $u'(x) = u(x) + 2xe^x$

L'équation (2) devient donc : g'(x) = g(x), ce qui signifie que la fonction g est solution de l'équation différentielle : y' = y.

b. On sait que les solutions de l'équation différentielle y' = y sont les fonctions définies par $x \mapsto Ke^x$, $K \in \mathbb{R}$.

Donc on a
$$g(x) = Ke^x$$
, $K \in \mathbb{R}$ et $f(x) = Ke^x + 2xe^x$.

Les solutions de l'équation (E): $f(x) = (K+2)e^x$, $K \in \mathbb{R}$.

- **3.** Étude de la fonction *u*
 - **a.** On a $u'(x) = x(x+2)e^x$. Comme $e^x > 0$, quel que soit $x \in \mathbb{R}$, le signe de u'(x) est celui du trinôme x(x+2) qui a pour racines -2 et 0.

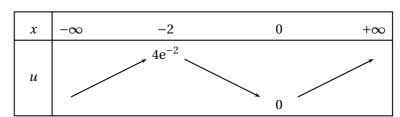
On sait que ce trinôme est positif, sauf entre les racines :

$$u'(x) > 0 \text{ sur }] - \infty ; -2[\cup [0; +\infty[;$$

$$u'(x) < 0 \text{ sur }] - 2; 0[;$$

$$u'(-2) = u'(0) = 0.$$

b. De la question précédente il suit que u est croissante sauf sur]-2; [0] où elle est décroissante, $u(-2) = 4e^{-2}$ et u(0) = 0 étant les deux extremums de la fonction sur \mathbb{R} .



c. u' est un produit de fonctions dérivables sur $\mathbb R$, donc elle est dérivable sur $\mathbb R$:

$$u''(x) = (2x+2)e^x + (x^2+2x)e^x = e^x(x^2+4x+2).$$

Comme $e^x > 0$, quel que soit $x \in \mathbb{R}$, le signe de u''(x) est celui du trinôme $x^2 + 4x + 2 = (x+2)^2 - 4 + 2 = (x+2)^2 - 2 = (x+2)^2 - (\sqrt{2})^2 = (x+2+\sqrt{2})(x+2-\sqrt{2})$.

Les racines de ce trinôme sont donc $-\sqrt{2}-2$ et $-\sqrt{2}+2$.

Le trinôme donc u''(x) sont négatifs entre les racines.

Conclusion : la fonction est concave sur l'intervalle $]-\sqrt{2}-2$; $+\sqrt{2}-2[$.

