Corrigé EDS 2023 Nouvelle Calédonie Jour 1

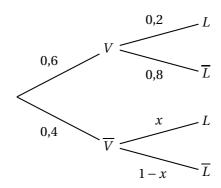
S. DIBOS

28 août 2023

Exercice 1 5 points

Partie A

1.



2. La probabilité qu'un client choisisse un bateau à voile et qu'il ne prenne pas l'option PILOTE est $P(V \cap \overline{L})$.

$$P(V \cap \overline{L}) = P(V) \times P_V(\overline{L}) = 0.6 \times 0.8 = \boxed{0.48}$$

3. Les évènements V et \overline{V} forment une partition de l'univers, donc, d'après la formule des probabilités totales, on a :

$$P(L) = P(V \cap L) + P(\overline{V} \cap L)$$

On a $P(V \cap L) = 0.6 \times 0.2 = 0.12$.

Posons $P(\overline{V} \cap L) = p$. On a:

$$P(L) = 0.12 + p \iff 0.42 = 0.12 + p \iff p = 0.42 - 0.12 = 0.3$$

On a donc bien $P(\overline{V} \cap L) = 0,3$.

4. D'après la formule des probabilités conditionnelles :

$$P_{\overline{V}}(L) = \frac{P(\overline{V} \cap L)}{P(\overline{V})} = \frac{0.3}{0.4} = \boxed{\frac{3}{4} = 0.75}$$

5. La probabilité qu'un client ait choisi un voilier, sachant qu'il a pris l'option PILOTE est, d'après la formule des probabilités conditionnelles :

$$P_L(V) = \frac{P(V \cap L)}{P(L)} = \frac{0.12}{0.42} = \boxed{\frac{2}{7} \approx 0.29}$$

1

Partie B

1.

$$P(L \cap A) = P(L) \times P_L(A) = 0.42 \times 0.005 = \boxed{0.002 \ 1}$$

$$P\left(\overline{L}\cap A\right) = P\left(\overline{L}\right) \times P_{\overline{V}}(A) = (1-0.42) \times 0.12 = \boxed{0.069\ 6}$$

2. Les évènements L et \overline{L} forment une partition de l'univers, donc, d'après la formule des probabilités totales, on a :

$$P(A) = P(L \cap A) + P(\overline{L} \cap A) = 0,002 \ 1 + 0,069 \ 6 = 0,071 \ 7$$

La probabilité que le bateau loué par un client choisi au hasard subisse une avarie est donc 0,071 7. Puisque l'entreprise loue 1 000 bateaux, elle peut s'attendre à 72 avaries.

Partie C

- 1. Les paramètres de la loi binomiale suivie par X sont $\boxed{n=40}$ et $\boxed{p=0,42}$.
- **2.** À l'aide de la calculatrice, on calcule $P(X \ge 15)$:

$$P(X \ge 15) \approx 0,768$$

Exercice 2 5 points

1. a.

$$u_1 = 5u_0 - 4 \times 0 - 3 = 5 \times 3 - 4 - 3 = 15 - 7 = \boxed{12}$$

b.

$$u_2 = 5u_1 - 4 \times 1 - 3 = 5 \times 12 - 4 - 3 = 60 - 7 = \boxed{53}$$

- **c.** Il semble que la suite (u_n) soit croissante et tende vers $+\infty$.
- **2. a.** Soit P_n la proposition $u_n \ge n+1$.

Initialisation : $u_0 = 3$ et 0 + 1 = 1.

 $3 \ge 1$. La proposition est donc vraie au rang n = 0.

Hérédité : on suppose la proposition vraie au rang $n \in \mathbb{N}$, $u_n \ge n+1$ (hypothèse de récurrence). On va vérifier qu'alors elle est vraie au rang suivant.

$$u_n \ge n+1$$
 \iff $5u_n \ge 5(n+1)$
 \iff $5u_n-4n-3 \ge 5n+5-4n-3$
 \iff $u_{n+1} \ge n+2 = (n+1)+1$

La proposition est donc héréditaire.

<u>Conclusion</u>: la proposition P_n est vérifiée au rang n = 0 et est héréditaire, donc, d'après le principe de récurrence, elle est vraie pour tout entier naturel $n : u_n \ge n + 1$.

b. On a: $\lim_{n \to +\infty} (n+1) = +\infty$. Puisque $u_n \ge n+1$, par comparaison, on a:

$$\lim_{n\to+\infty}u_n=+\infty$$

3. a.

$$v_{n+1} = u_{n+1} - (n+1) - 1$$

$$= 5u_n - 4n - 3 - n - 1 - 1$$

$$= 5u_n - 5n - 5$$

$$= 5(u_n - n - 1)$$

$$= 5v_n$$

La suite (v_n) est donc une suite géométrique de raison q=5 et de premier terme $v_0=u_0-0-1=2$.

b. Puisque (v_n) est une suite géométrique de raison 5 et de premier terme $v_0 = 2$, on a :

$$v_n = 2 \times 5^n$$

c. $v_n = u_n - n - 1 \iff u_n = v_n + n + 1$. Donc:

$$u_n = 2 \times 5^n + n + 1$$

d. Puisque 5 > 1, la suite de terme général 5^n est strictement croissante, donc $5^{n+1} \ge 5^n$.

$$5^{n+1} \ge 5^{n} \iff 2 \times 5^{n+1} \ge 2 \times 5^{n}$$

$$\iff 2 \times 5^{n+1} + (n+1) + 1 \ge 2 \times 5^{n} + (n+1) + 1$$

$$\iff u_{n+1} \ge 2 \times 5^{n} + n + 2$$

$$\iff u_{n+1} \ge 2 \times 5^{n} + n + 1$$

$$\iff u_{n+1} \ge u_{n}$$

La suite (u_n) est donc croissante.

4. a

```
def suite():
    u=3
    n=0
    while u<10**7:
        u= 5*u-4*n-3
        n=n+1
    return n</pre>
```

b.

u	n	u < 10 ⁷
3	0	VRAI
12	1	VRAI
53	2	VRAI
254	3	VRAI
1 255	4	VRAI
6 256	5	VRAI
31 257	6	VRAI
156 258	7	VRAI
781 259	8	VRAI
3 906 260	9	VRAI
19 531 261	10	FAUX

La valeur renvoyée par cette fonction est n = 10. C'est le rang à partir duquel $u_n \ge 10^7$.

Exercice 3 5 points

1. On a $f(x) = (x+1)e^x = xe^x + e^x$. Donc les primitives de f sont de la forme $F(x) = xe^x + c$ avec $c \in \mathbb{R}$. Donc $F(x) = 1 + xe^x$ est une primitive de f.

Réponse a.

2.
$$\overrightarrow{u_1} \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$$
 est un vecteur directeur de (d_1) et $\overrightarrow{u_2} \begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ est un vecteur directeur de (d_2) .

On a $\frac{1}{-1} \neq \frac{1}{1}$, donc $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ ne sont pas colinéaires. Les droites ne sont donc pas parallèles.

Supposons qu'elle soient sécantes en un point A. Alors les coordonnées (a;b;c) de A vérifient les deux représentations paramétriques:

$$\left\{ \begin{array}{lll} a & = & 2+r \\ b & = & 1+r \\ c & = & -r \end{array} \right. \, \left. \begin{array}{lll} a & = & 1-s \\ b & = & -1+s \\ c & = & 2-s \end{array} \right. .$$

On a donc $-r = 2 - s \iff r = s - 2$ et $2 + r = 1 - s \iff 2 + s - 2 = 1 - s \iff 2s = 1 \iff s = \frac{1}{2}$.

Donc:
$$b = -1 + \frac{1}{2} = -\frac{1}{2}$$
, $a = 1 - \frac{1}{2} = \frac{1}{2}$ et $c = 2 - \frac{1}{2} = \frac{3}{2}$.

Les deux droites sont sécantes en A $\left(\frac{1}{2}; -\frac{1}{2}; \frac{3}{2}\right)$.

Réponse a.

3. Un vecteur normal au plan (P) est $\overrightarrow{n} \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$ et un vecteur directeur de (Δ) est $\overrightarrow{u} = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$.

On a : $\vec{n} \cdot \vec{u} = 2 \times 1 - 1 \times 1 + 1 \times (-1) = 0$, donc \vec{n} et \vec{u} sont orthogonaux. Donc (P) et (Δ) sont parallèles. S'il existe un point commun à (P) et (Δ), alors (Δ) est incluse dans (P).

(Δ) passe par le point de coordonnées (2 ; 4 ; 1). Or $2 \times 2 - 4 + 1 - 1 = 0$, donc ce point est un point du plan (P). La droite (Δ) est donc incluse dans le plan (P).

Réponse b.

4. Un vecteur normal à (P_1) est $\overrightarrow{n_1} = \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix}$ et un vecteur normal à (P_2) est $\overrightarrow{n_2} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$.

On a $\frac{1}{2} \neq \frac{-2}{1}$, donc $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ ne sont pas colinéaires. Les plans ne sont donc pas parallèles. Ils sont donc sécants

De plus $\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 1 \times 2 - 2 \times 1 + 1 \times 1 = 1$, donc les vecteurs $\overrightarrow{n_1}$ et $\overrightarrow{n_2}$ ne sont pas orthogonaux. Les plans ne sont donc pas perpendiculaires.

Réponse c.

5. On sait que
$$\overrightarrow{EF} \cdot \overrightarrow{EG} = \|\overrightarrow{EF}\| \times \|\overrightarrow{EG}\| \times \cos(\overrightarrow{EF}, \overrightarrow{EG}) \iff \cos \alpha = \frac{\overrightarrow{EF} \cdot \overrightarrow{EG}}{\|\overrightarrow{EF}\| \times \|\overrightarrow{EG}\|}$$

On a:
$$\overrightarrow{EF}\begin{pmatrix} 2-1\\4-2\\3-1 \end{pmatrix} = \begin{pmatrix} 1\\2\\2 \end{pmatrix}$$
 et $\overrightarrow{EG}\begin{pmatrix} -2-1\\2-2\\5-1 \end{pmatrix} = \begin{pmatrix} -3\\0\\4 \end{pmatrix}$. $\overrightarrow{EF} \cdot \overrightarrow{EG} = 1 \times (-3) + 2 \times 0 + 2 \times 4 = 5$

$$\|\overrightarrow{EF}\| = \sqrt{1^2 + 2^2 + 2^2} = \sqrt{9} = 3$$

$$\|\overrightarrow{EG}\| = \sqrt{(-3)^2 + 0^2 + 4^2} = \sqrt{25} = 5$$

Donc: $\cos \alpha = \frac{5}{3 \times 5} = \frac{1}{3}$, soit $\alpha \approx 71^{\circ}$ d'après la calculatrice. **Réponse d.**

Exercice 4 5 points

1. **a.**
$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = \lim_{\substack{x \to 0 \\ x > 0}} \left[5x^2 + 2x - 2x^2 \ln(x) \right]$$

Par croissance comparée
$$\lim_{\substack{x \to 0 \\ x > 0}} (5x^2 + 2x) = 0$$

$$\Longrightarrow \lim_{\substack{x \to 0 \\ x > 0}} \lim_{\substack{x \to 0 \\ x > 0}} [5x^2 + 2x - 2x^2 \ln(x)] = 0$$

$$\lim_{\substack{x \to 0 \\ x > 0}} f(x) = 0$$

b.
$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \left[5x^2 + 2x - 2x^2 \ln(x) \right] = \lim_{x \to +\infty} x^2 \left[5 + \frac{2}{x} - 2\ln(x) \right]$$

$$\lim_{x \to +\infty} \frac{2}{x} = 0 \implies \lim_{x \to +\infty} \left(5 + \frac{2}{x} \right) = 5$$

$$\lim_{x \to +\infty} \ln(x) = +\infty \implies \lim_{x \to +\infty} -2\ln(x) = -\infty$$

$$\lim_{x \to +\infty} \ln(x) = +\infty \implies \lim_{x \to +\infty} -2\ln(x) = -\infty$$

$$\lim_{x \to +\infty} x^2 = +\infty$$

$$\lim_{x \to +\infty} \left[5 + \frac{2}{x} - 2\ln(x) \right] = -\infty$$

$$\lim_{x \to +\infty} \left[5 + \frac{2}{x} - 2\ln(x) \right] = -\infty$$

$$\lim_{x \to +\infty} f(x) = -\infty$$

2.

$$f'(x) = 5 \times 2x + 2 - 2\left[2x \times \ln(x) + x^2 \times \frac{1}{x}\right] = 10x + 2 - 2\left[2x\ln(x) + x\right] = 10x + 2 - 4x\ln(x) - 2x$$
$$= 8x + 2 - 4x\ln(x)$$

3. a

$$f''(x) = 8 - 4\left[1 \times \ln(x) + x \times \frac{1}{x}\right] = 8 - 4\ln(x) - 4 = 4 - 4\ln(x) = \boxed{4\left[1 - \ln(x)\right]}$$

b. La courbe \mathscr{C}_f est au-dessus de ses tangentes si, et seulement si, f est convexe, ce qui équivaut à f''(x) est positif.

 $f''(x) \ge 0 \iff 4[1-\ln(x)] \ge 0 \iff 1-\ln(x) \ge 0 \iff -\ln(x) \ge -1 \iff \ln(x) \le 1 \iff x \le e \text{ (car la fonction ln est strictement croissante sur }]0; +\infty[).$

La courbe \mathcal{C}_f est donc au-dessus de ses tangentes sur l'intervalle]0; e].

c.

x	0	e	+∞
Signe de $f''(x)$		+ 0 -	
Variations de f'		4e+2	$-\infty$

$$f'(e) = 8e + 2 - 4e \ln(e) = 8e + 2 - 4e = 4e + 2$$

4. a. Sur]0; e], la fonction f' est strictement croissante avec $\lim_{\substack{x \to 0 \\ x > 0}} f'(x) = 2$, donc pour tout $x \in]0$; e], on a f'(x) > 0.

Sur $[e; +_i nfty]$, la fonction f' est continue (puisque dérivable) et strictement décroissante. De plus, f(texte) = 4e + 2 > 0 et $\lim_{x \to +\infty} f'(x) = -\infty$. $0 \in]-\infty$; 4e + 2[, donc, d'après le corollaire du théorème des valeurs intermédiaires, l'équation f'(x) = 0 admet une solution unique α sur $[e; +\infty[$.

Au final, l'équation f'(x) = 0 admet une solution unique α sur]0; $+\infty[$.

On a:

$$7,87 < \alpha < 7,88$$

b. On sait que sur]0; e] on a f'(x) > 0. Puisque f' est décroissante sur $[e; +\infty[$ et qu'elle s'annule en α , $f'(x) \ge 0$ sur $[e; \alpha]$ et $f'(x) \le 0$ sur $[\alpha; +\infty[$. Donc f'(x) est positif sur $]0; \alpha]$ et négatif sur $[\alpha; +\infty[$.

x	0	α + ∞
Signe de $f'(x)$		+ 0 -
Variations de <i>f</i>		$f(\alpha)$ $-\infty$

5. On a $f''(\alpha) = 8\alpha + 2 - 4\alpha \ln(\alpha)$, donc:

$$f'(\alpha) = 0 \iff 8\alpha + 2 - 4\alpha \ln(\alpha) = 0$$

$$\iff 4\alpha \ln(\alpha) = 8\alpha + 2$$

$$\iff \ln(\alpha) = \frac{2(4\alpha + 1)}{4\alpha} \qquad (\alpha \neq 0)$$

$$\iff \ln(\alpha) = \frac{4\alpha + 1}{2\alpha}$$

On a donc:

$$f(\alpha) = 5\alpha^2 + 2\alpha - 2\alpha^2 \ln(\alpha)$$

$$= 5\alpha^2 + 2\alpha - 2\alpha^2 \times \frac{4\alpha + 1}{2\alpha}$$

$$= 5\alpha^2 + 2\alpha - \alpha(4\alpha + 1)$$

$$= 5\alpha^2 + 2\alpha - 4\alpha^2 - \alpha$$

$$= \alpha^2 + \alpha$$

6. D'après la question 4.a., on a :

$$7,87 < \alpha < 7,88 \iff 61,936 \ 9 < \alpha^2 < 62,094 \ 4$$

$$\iff 69,806 \ 9 < \alpha^2 + \alpha < 69,974 \ 4$$

$$\iff \boxed{69,806 \ 9 < f(\alpha) < 69,974 \ 4}$$